Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.164
Filtrar
1.
Sci Rep ; 14(1): 8006, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580778

RESUMEN

The 50-km ultra-marathon is a popular race distance, slightly longer than the classic marathon distance. However, little is known about the country of affiliation and age of the fastest 50-km ultra-marathon runners and where the fastest races are typically held. Therefore, this study aimed to investigate a large dataset of race records for the 50-km distance race to identify the country of affiliation and the age of the fastest runners as well as the locations of the fastest races. A total of 1,398,845 50-km race records (men, n = 1,026,546; women, n = 372,299) were analyzed using both descriptive statistics and advanced regression techniques. This study revealed significant trends in the performance of 50-km ultra-marathoners. The fastest 50-km runners came from African countries, while the fastest races were found to occur in Europe and the Middle East. Runners from Ethiopia, Lesotho, Malawi, and Kenya were the fastest in this race distance. The fastest 50-km racecourses, providing ideal conditions for faster race times, are in Europe (Luxembourg, Belarus, and Lithuania) and the Middle East (Qatar and Jordan). Surprisingly, the fastest ultra-marathoners in the 50-km distance were found to fall into the age group of 20-24 years, challenging the conventional belief that peak ultra-marathon performance comes in older age groups. These findings contribute to a better understanding of the performance models in 50-km ultra-marathons and can serve as valuable insights for runners, coaches, and race organizers in optimizing training strategies and racecourse selection.


Asunto(s)
Rendimiento Atlético , Carrera de Maratón , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Pueblo de África Oriental , Kenia , Resistencia Física , Distribución por Edad
2.
J Int Soc Sports Nutr ; 21(1): 2341903, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38626029

RESUMEN

Protein supplementation often refers to increasing the intake of this particular macronutrient through dietary supplements in the form of powders, ready-to-drink shakes, and bars. The primary purpose of protein supplementation is to augment dietary protein intake, aiding individuals in meeting their protein requirements, especially when it may be challenging to do so through regular food (i.e. chicken, beef, fish, pork, etc.) sources alone. A large body of evidence shows that protein has an important role in exercising and sedentary individuals. A PubMed search of "protein and exercise performance" reveals thousands of publications. Despite the considerable volume of evidence, it is somewhat surprising that several persistent questions and misconceptions about protein exist. The following are addressed: 1) Is protein harmful to your kidneys? 2) Does consuming "excess" protein increase fat mass? 3) Can dietary protein have a harmful effect on bone health? 4) Can vegans and vegetarians consume enough protein to support training adaptations? 5) Is cheese or peanut butter a good protein source? 6) Does consuming meat (i.e., animal protein) cause unfavorable health outcomes? 7) Do you need protein if you are not physically active? 8) Do you need to consume protein ≤ 1 hour following resistance training sessions to create an anabolic environment in skeletal muscle? 9) Do endurance athletes need additional protein? 10) Does one need protein supplements to meet the daily requirements of exercise-trained individuals? 11) Is there a limit to how much protein one can consume in a single meal? To address these questions, we have conducted a thorough scientific assessment of the literature concerning protein supplementation.


Asunto(s)
Proteínas en la Dieta , Resistencia Física , Humanos , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Suplementos Dietéticos , Músculo Esquelético/fisiología
3.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646853

RESUMEN

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Asunto(s)
Rendimiento Atlético , Cafeína , Creatina , Sustancias para Mejorar el Rendimiento , Bicarbonato de Sodio , Humanos , Cafeína/farmacología , Cafeína/administración & dosificación , Bicarbonato de Sodio/administración & dosificación , Bicarbonato de Sodio/farmacología , Masculino , Creatina/administración & dosificación , Creatina/farmacología , Adulto , Femenino , Adulto Joven , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/farmacología , Rendimiento Atlético/fisiología , Resistencia Física/efectos de los fármacos , Entrenamiento Aeróbico , Método Doble Ciego , Consumo de Oxígeno/efectos de los fármacos
4.
Braz J Cardiovasc Surg ; 39(2): e20230231, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568942

RESUMEN

INTRODUCTION: Protocols for obtaíníng the maxímum threshold pressure have been applied wíth límited precision to evaluate ínspiratory muscle endurance. In thís sense, new protocols are needed to allow more relíable measurements. The purpose of the present study was to compare a new incremental ramp load protocol for the evaluation of ínspíratory muscle endurance wíth the most used protocol in healthy indíviduals. METHODS: This was a prospective cross-sectional study carried out ín a síngle center. Nínety-two healthy indíviduals (43 men [22 ± 3 years] and 49 women [22 ± 3 years]) were randomly allocated to perform: (i) íncremental ramp load protocol and (íí) íncremental step loadíng protocol. The sustained pressure threshold (or maximum threshold pressure), maximum threshold pressure/dynamic strength índex ratío, time untíl task faílure, as well as dífference between the mean heart rate of the last five mínutes of baselíne and the peak heart rate of the last 30 seconds of each protocol were measured. RESULTS: Incremental ramp load protocol wíth small íncreases in the load and starting from mínímum values of strength index was able to evaluate the inspiratory muscle endurance through the maxímum threshold pressure of healthy indívíduals. CONCLUSION: The present study suggests that the íncremental ramp load protocol is able to measure maximum threshold pressure in a more thorough way, wíth less progression and greater accuracy in the load stratification compared to the límited incremental step loading protocol and with a safe and expected cardiovascular response in healthy individuals.


Asunto(s)
Prueba de Esfuerzo , Resistencia Física , Masculino , Humanos , Femenino , Resistencia Física/fisiología , Estudios Transversales , Estudios Prospectivos , Músculos Respiratorios/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Work ; 77(4): 1319-1329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457166

RESUMEN

BACKGROUND: Militaries have historically utilised generic physical fitness tests to assess physical readiness, but there has been a recent shift to develop physical employment standards (PES) based on actual job demands. OBJECTIVE: The purpose of this investigation was to characterise the physical demands of critical tasks performed by Royal Australian Air Force (RAAF) personnel to inform PES development. METHODS: Job task analysis were performed for 27 RAAF trades. Criterion tasks were identified through a systematic approach involving workshops and field-observations. The identified tasks were assessed for dominant physical capacity and grouped into movement-based clusters. Psychophysiological measures were collected from personnel performing the tasks. RESULTS: Of 87 criterion tasks, 92% were characterised as manual handling dominant. Across these 87 tasks the principal physical capacities were: muscular strength (59%), muscular endurance (52%) and cardiorespiratory endurance (39%). The most common movement clusters were Lift to Platform (44%) and Lift and Carry (38%). Lift to Platform tasks required lifting to a median height of 1.32 m (1.20 -1.65 m) and a median mass of 25.0 kg (21.0 -28.9 kg) per person. Median carry mass was 25.0 kg (22.4 -36.1 kg) per person and distance was 26.0 m (17.5 -50.0 m). Median task mean 'Vdot;O2, HR and RPE were 1.8 L.min- 1 (1.5-2.2 L.min- 1), 137 b.min- 1 (120-144) and 13 (12-14). CONCLUSIONS: The high proportion of manual handling criterion tasks emphasises the importance of these activities and the underlying physical capacities for RAAF personnel. Current fitness assessments are unlikely to predict job task performance.


Asunto(s)
Personal Militar , Aptitud Física , Humanos , Australia , Aptitud Física/fisiología , Fuerza Muscular/fisiología , Empleo , Análisis y Desempeño de Tareas , Resistencia Física/fisiología
6.
Acta Physiol (Oxf) ; 240(5): e14139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509816

RESUMEN

AIM: Endurance exercise training is known to increase mitochondrial respiration in skeletal muscle. However, the molecular mechanisms behind this are not fully understood. Myoglobin (Mb) is a member of the globin family, which is highly expressed in skeletal and cardiac muscles. We recently found that Mb localizes inside mitochondria in skeletal muscle and interacts with cytochrome c oxidase subunit IV (COXIV), a subunit of mitochondrial complex IV, which regulates respiration by augmenting complex IV activity. In the present study, we investigated the effect of endurance training on Mb-COXIV interaction within mitochondria in rat skeletal muscle. METHODS: Eight-week-old male Wistar rats were subjected to 6-week treadmill running training. Forty-eight hours after the last training session, the plantaris muscle was removed under anesthesia and used for biochemical analysis. RESULTS: The endurance training increased mitochondrial content in the skeletal muscle. It also augmented complex IV-dependent oxygen consumption and complex IV activity in isolated mitochondria from skeletal muscle. Furthermore, endurance training increased Mb expression at the whole muscle level. Importantly, mitochondrial Mb content and Mb-COXIV binding were increased by endurance training. CONCLUSION: These findings suggest that an increase in mitochondrial Mb and the concomitant enhancement of Mb interaction with COXIV may contribute to the endurance training-induced upregulation of mitochondrial respiration by augmenting complex IV activity.


Asunto(s)
Complejo IV de Transporte de Electrones , Músculo Esquelético , Mioglobina , Condicionamiento Físico Animal , Ratas Wistar , Animales , Masculino , Músculo Esquelético/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Ratas , Condicionamiento Físico Animal/fisiología , Mioglobina/metabolismo , Entrenamiento Aeróbico , Mitocondrias Musculares/metabolismo , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología
7.
J Am Heart Assoc ; 13(6): e033640, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38497478

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is a common arrhythmia characterized by uncoordinated atrial electrical activity. Lone AF occurs in the absence of traditional risk factors and is frequently observed in male endurance athletes, who face a 2- to 5-fold higher risk of AF compared with healthy, moderately active males. Our understanding of how endurance exercise contributes to the pathophysiology of lone AF remains limited. This study aimed to characterize the circulating protein fluctuations during high-intensity exercise as well as explore potential biomarkers of exercise-associated AF. METHODS AND RESULTS: A prospective cohort of 12 male endurance cyclists between the ages of 40 and 65 years, 6 of whom had a history of exercise-associated AF, were recruited to participate using a convenience sampling method. The circulating proteome was subsequently analyzed using multiplex immunoassays and aptamer-based proteomics before, during, and after an acute high-intensity endurance exercise bout to assess temporality and identify potential markers of AF. The endurance exercise bout resulted in significant alterations to proteins involved in immune modulation (eg, growth/differentiation factor 15), skeletal muscle metabolism (eg, α-actinin-2), cell death (eg, histones), and inflammation (eg, interleukin-6). Subjects with AF differed from those without, displaying modulation of proteins previously known to have associations with incident AF (eg, C-reactive protein, insulin-like growth factor-1, and angiopoietin-2), and also with proteins having no previous association (eg, tapasin-related protein and α2-Heremans-Schmid glycoprotein). CONCLUSIONS: These findings provide insights into the proteomic response to acute intense exercise, provide mechanistic insights into the pathophysiology behind AF in athletes, and identify targets for future study and validation.


Asunto(s)
Fibrilación Atrial , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Proteómica , Ejercicio Físico/fisiología , Atletas , Factores de Riesgo , Resistencia Física/fisiología
8.
J Sports Sci Med ; 23(1): 46-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455445

RESUMEN

This study investigated whether the improved performance observed with maximal self-paced single-leg (SL), compared with double-leg (DL) cycling, is associated with enhanced femoral blood flow and/or altered tissue oxygenation. The hyperaemic response to exercise was assessed in younger and older athletes. Power output was measured in 12 older (65 ± 4 y) and 12 younger (35 ± 5 y) endurance-trained individuals performing 2 x 3 min maximal self-paced exercise using SL and DL cycling. Blood flow (BF) in the femoral artery was assessed using Doppler ultrasound and muscle oxygenation was measured using near-infrared spectroscopy on the vastus lateralis. SL cycling elicited a greater power output (295 ± 83 vs 265 ± 70 W, P < 0.001) and peak femoral BF (1749.1 ± 533.3 vs 1329.7 ± 391.7 ml/min, P < 0.001) compared with DL cycling. Older individuals had a lower peak BF in response to exercise (1355.4 ± 385.8 vs 1765.2 ± 559.6 ml/min, P = 0.019) compared with younger individuals. Peak BF in response to exercise was correlated with power output during SL (r = 0.655, P = 0.002) and DL (r = 0.666, P = 0.001) cycling. The greater exercise performance during SL compared with DL cycling may be partly explained by a greater hyperaemic response when reducing active muscle mass. Despite regular endurance training, older athletes had a lower femoral BF in response to maximal self-paced exercise compared with younger athletes.


Asunto(s)
Entrenamiento Aeróbico , Humanos , Anciano , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Músculo Cuádriceps/diagnóstico por imagen , Atletas
9.
Nutrients ; 16(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474845

RESUMEN

This study compared flavored kefir (KFR) and flavored milk (MLK) as a recovery drink in endurance master athletes. Using a randomized, placebo-controlled, non-blinded crossover design, 11 males and females completed three testing visits whilst acutely ingesting either KFR, MLK, or water as a placebo (PLA). KFR supplementation occurred for 14 days before the KFR-testing day, followed by a 3-week washout period. Testing visits consisted of an exhausting-exercise (EE) bout, a 4-h rest period where additional carbohydrate feeding was provided, and a treadmill 5 km time trial (TT). The Gastrointestinal Symptom Rating Scale (GSRS) survey was assessed at four timepoints. Blood was collected at baseline and after the TT and was analyzed for I-FABP levels. No significant difference (PLA: 33:39.1 ± 6:29.0 min, KFR: 33:41.1 ± 5:44.4 min, and MLK: 33:36.2 ± 6:40.5 min, p = 0.99) was found between the groups in TT performance. The KFR GSRS total score was significantly lower than the PLA after EE (p = 0.005). No differences in I-FABP were observed between conditions. In conclusion, acute KFR supplementation did not impact TT performance or I-FABP levels but may have reduced subjective GI symptoms surrounding exercise when compared to MLK or PLA.


Asunto(s)
Kéfir , Carrera , Masculino , Femenino , Humanos , Animales , Leche , Agua , Atletas , Poliésteres , Resistencia Física , Estudios Cruzados
10.
Front Public Health ; 12: 1302175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481847

RESUMEN

Introduction: This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods: Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results: After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion: Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.


Asunto(s)
Entrenamiento Aeróbico , Condicionamiento Físico Animal , Humanos , Masculino , Ratones , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Ratones Endogámicos C57BL , Mitocondrias , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Material Particulado/efectos adversos
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474128

RESUMEN

A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.


Asunto(s)
Entrenamiento Aeróbico , Transcriptoma , Masculino , Adulto Joven , Humanos , Resistencia Física/fisiología , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología
12.
Medicina (Kaunas) ; 60(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38399506

RESUMEN

Background and Objectives: Pacing analyses for increasingly popular long-distance running disciplines have been in researchers' spotlight for several years. In particular, assessing pacing variability in long-distance running was hardly achievable since runners must repeat long-running trials for several days. Potential solutions for these problems could be multi-stage long-distance running disciplines. Therefore, this study aimed to assess the long-distance running variability as well as the reliability, validity, and sensitivity of the variables often used for pacing analyses. Materials and Methods: This study collected the split times and finish times for 20 participants (17 men and three women; mean age 55.5 years ± 9.5 years) who completed the multiday marathon running race (five marathons in 5 days), held as part of the Bretzel Ultra Tri in Colmar, France, in 2021. Seven commonly used pacing variables were subsequently calculated: Coefficient of variation (CV), Change in mean speed (CS), Change in first lap speed (CSF), Absolute change in mean speed (ACS), Pace range (PR), Mid-race split (MRS), and First 32 km-10 km split (32-10). Results: Multi-stage marathon running showed low variability between days (Intraclass correlation coefficient (ICC) > 0.920), while only the CV, ACS, and PR variables proved to have moderate to good reliability (0.732 < ICC < 0.785). The same variables were also valid (r > 0.908), and sensitive enough to discern between runners of different performance levels (p < 0.05). Conclusions: Researchers and practitioners who aim to explore pacing in long-distance running should routinely utilize ACS, CV, and PR variables in their analyses. Other examined variables, CS, CSF, MRS, and 32-10, should be used cautiously. Future studies might try to confirm these results using different multi-stage event's data as well as by expanding sensitivity analysis to age and gender differences.


Asunto(s)
Rendimiento Atlético , Carrera , Masculino , Humanos , Femenino , Persona de Mediana Edad , Resistencia Física , Carrera de Maratón , Reproducibilidad de los Resultados , Factores de Tiempo
13.
Physiol Rep ; 12(3): e15929, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307709

RESUMEN

Diastolic dysfunction is a major cardiac dysfunction, and an important predisposing factor is age. Although exercise training is often used for the prevention and treatment of cardiovascular disease nowadays, little is currently known about whether exercise interventions associated with the slowing of cardiac aging are related to mtp-related pathways. In the present study, the UAS/Tub-Gal4 system was used to knockdown whole-body mtp expression levels in Drosophila, which underwent 2 weeks of endurance training. By conducting different assays and quantifying different indicators, we sought to investigate the relationship between mtp, exercise, and age-related diastolic dysfunction. We found that (1) Drosophila in the mtpRNAi youth group exhibited age-related diastolic dysfunction and had a significantly shorter mean lifespan. (2) Endurance exercise could improve diastolic dysfunction and prolong lifespan in aged Drosophila. (3) Endurance exercise could increase the expression levels of apolpp and Acox3, and decrease the levels of TC, LDL-C, and TG in the aged group. In summary, aging causes age-associated diastolic dysfunction in Drosophila, and systemic knockdown of mtp causes premature age-associated diastolic dysfunction in young Drosophila. Besides, endurance exercise improves age-related diastolic dysfunction and prolongs lifespan.


Asunto(s)
Envejecimiento , Drosophila melanogaster , Longevidad , Resistencia Física , Animales , Humanos , Envejecimiento/fisiología , Corazón/fisiología , Resistencia Física/fisiología , Drosophila melanogaster/fisiología
14.
Physiol Rep ; 12(3): e15927, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311362

RESUMEN

Slow-releasing carbohydrates may delay the effects of fatigue after exhaustive exercise. The purpose of this study was to observe the influence that hydrothermally modified starches (HMS) and traditional maltodextrin (MAL) supplements had on physical endurance and mental performance following exhaustive exercise. Male participants completed a VO2 max and 2 days of cycling sessions using a Velotron ergometer. Cycling sessions were performed at 70% of the VO2 max workload for 150 min. Supplements were consumed 30 min before cycling and during exercise at the 120-min mark (1 g CHO/kg body weight). Brain activity was measured using a Neuroscan 64-channel electroencephalogram cap. Go-no-go and N-back tasks were performed before and after cycling bouts. Blood glucose, lactate, ketones, and urine-specific gravity were measured before, during, and after cycling. VO2 and rate of perceived exertion were recorded in 15-min intervals. Ketones increased significantly more for HMS than MAL from pre- to postcycling measurements (p < 0.05). Reaction times for go-no-go and N-back were faster for HMS postexercise. Event-related potential differences were present in both mental tasks following exhaustive exercise. HMS supplementation decreased the impact of cognitive and physical fatigue postexercise.


Asunto(s)
Carbohidratos de la Dieta , Almidón , Humanos , Masculino , Carbohidratos de la Dieta/farmacología , Ejercicio Físico , Resistencia Física , Ácido Láctico , Fatiga , Cetonas , Ciclismo , Consumo de Oxígeno , Esfuerzo Físico
15.
J Physiol Sci ; 74(1): 8, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331728

RESUMEN

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.


Asunto(s)
Entrenamiento Aeróbico , Humanos , Ratas , Animales , Triglicéridos , Resistencia Física/fisiología , Músculo Esquelético/metabolismo , Insulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Lactatos/metabolismo
16.
Nutrients ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337697

RESUMEN

The main purpose of this study was to investigate the effect of a novel alginate-encapsulated carbohydrate-protein (CHO-PRO ratio 2:1) supplement (ALG) on cycling performance. The ALG, designed to control the release of nutrients, was compared to an isocaloric carbohydrate-only control (CON). Alginate encapsulation of CHOs has the potential to reduce the risk of carious lesions. METHODS: In a randomised cross-over clinical trial, 14 men completed a preliminary test over 2 experimental days separated by ~6 days. An experimental day consisted of an exercise bout (EX1) of cycling until exhaustion at W~73%, followed by 5 h of recovery and a subsequent time-to-exhaustion (TTE) performance test at W~65%. Subjects ingested either ALG (0.8 g CHO/kg/hr + 0.4 g PRO/kg/hr) or CON (1.2 g CHO/kg/hr) during the first 2 h of recovery. RESULTS: Participants cycled on average 75.2 ± 5.9 min during EX1. Levels of plasma branched-chain amino acids decreased significantly after EX1, and increased significantly with the intake of ALG during the recovery period. During recovery, a significantly higher plasma insulin and glucose response was observed after intake of CON compared to ALG. Intake of ALG increased plasma glucagon, free fatty acids, and glycerol significantly. No differences were found in the TTE between the supplements (p = 0.13) nor in the pH of the subjects' saliva. CONCLUSIONS: During the ALG supplement, plasma amino acids remained elevated during the recovery. Despite the 1/3 less CHO intake with ALG compared to CON, the TTE performance was similar after intake of either supplement.


Asunto(s)
Alginatos , Rendimiento Atlético , Masculino , Humanos , Alginatos/farmacología , Rendimiento Atlético/fisiología , Resistencia Física , Carbohidratos de la Dieta/farmacología , Atletas , Suplementos Dietéticos
17.
Exp Physiol ; 109(2): 165-174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38189630

RESUMEN

The Tour Divide (TD) is a 4385 km ultra-endurance bicycle race that follows the continental divide from Canada to Mexico. In this case study, we performed a comprehensive molecular and physiological profile before and after the completion of the TD. Assessments were performed 35 days before the start (Pre-TD) and ∼36 h after the finish (Post-TD). Total energy expenditure was assessed during the first 9 days by doubly labelled water (2 H2 18 O), abdominal and leg tissue volumes via MRI, and graded exercise tests to quantify fitness and substrate preference. Vastus lateralis muscle biopsies were taken to measure mitochondrial function via respirometry, and vascular function was assessed using Doppler ultrasound. The 47-year-old male subject took 16 days 7 h 45 min to complete the route. He rode an average of 16.8 h/day. Neither maximal O2 uptake nor maximal power output changed pre- to post-TD. Measurement of total energy expenditure and dietary recall records suggested maintenance of energy balance, which was supported by the lack of change in body weight. The subject lost both appendicular and trunk fat mass and gained leg lean mass pre- to post-TD. Skeletal muscle mitochondrial and vascular endothelial function decreased pre- to post-TD. Overall, exercise performance was maintained despite reductions in muscle mitochondrial and vascular endothelial function post-TD, suggesting a metabolic reserve in our highly trained athlete.


Asunto(s)
Ciclismo , Resistencia Física , Masculino , Humanos , Persona de Mediana Edad , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Metabolismo Energético , Músculo Esquelético/fisiología
18.
J Appl Physiol (1985) ; 136(3): 555-566, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38234292

RESUMEN

Ventricular-vascular coupling in endurance athletes remains incompletely understood. The purpose of this study was to determine the ascending aortic impedance in endurance athletes and explore its associations with traditional cardiovascular measurements. In 15 young male endurance runners and 19 young healthy men, time-resolved (CINE) two-dimensional (2-D) phase-contrast MRI quantified the ascending aortic flow while the pressure waveform was simultaneously collected via a generalized transfer function. The aortic impedance modulus and phase were calculated in the frequency domain while characteristic impedance (ZcF) was calculated by averaging moduli between the 4th and 8th heart rate (HR) harmonics. Stroke volume (SV), left ventricular (LV) morphometry, double product, aortic compliance, and total peripheral resistance (TPR) were also measured. Endurance athletes had higher SV, slower HR, greater LV end-diastolic volume and mass, and lower double product than sedentary participants (all P < 0.05). ZcF was significantly lower in athletes than in sedentary participants (73.3 ± 19.2 vs. 93.4 ± 19.0 dyn·s/cm5, P = 0.005). Furthermore, ZcF was negatively correlated with SV (r = -0.691) and aortic compliance (r = -0.601) but was positively correlated with double product (r = 0.445) and TPR (r = 0.458; all P < 0.05). Multivariate analysis revealed that ZcF was the strongest predictor of SV followed by TPR and HR (adjusted R2 = 0.788, P < 0.001). Therefore, our findings collectively suggest that LV afterload quantified by aortic ZcF is significantly lower in endurance athletes than in sedentary adults. The lower pulsatile LV afterload may contribute to greater SV in endurance athletes.NEW & NOTEWORTHY This is the first study to investigate aortic impedance with the noninvasive, simultaneous recordings of aortic pressure using SphygmoCor XCEL and flow using phase-contrast MRI. We found that the characteristic impedance (Zc) is significantly lower in endurance athletes than sedentary adults, is the strongest predictor of stroke volume (SV), and is inversely associated with aortic compliance. These findings suggest that aortic impedance is a key determinant of the ventricular-vascular coupling adapted to long-term training in endurance athletes.


Asunto(s)
Atletas , Función Ventricular Izquierda , Adulto , Humanos , Masculino , Impedancia Eléctrica , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Imagen por Resonancia Magnética , Resistencia Física/fisiología
19.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R266-R275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223937

RESUMEN

The impacts of carbohydrate (CHO) availability on time to task failure (TTF) and physiological responses to exercise at the maximal lactate steady state (MLSS) have not been studied. Ten participants (3 females, 7 males) completed this double-blinded, placebo-controlled study that involved a ramp incremental test, MLSS determination, and four TTF trials at MLSS, all performed on a cycle ergometer. With the use of a combination of nutritional (CHO, 7 g/kg, and placebo, PLA, 0 g/kg drinks) and exercise interventions [no exercise (REST) and glycogen-reducing exercise (EX)], the four conditions were expected to differ in preexercise CHO availability (RESTCHO > RESTPLA > EXCHO > EXPLA). TTF at MLSS was not improved by CHO loading, as RESTCHO (57.1 [16.6] min) and RESTPLA (57.1 [15.6] min) were not different (P = 1.00); however, TTF was ∼50% shorter in EX conditions compared with REST conditions on average (P < 0.05), with EXCHO (39.1 [9.2] min) ∼90% longer than EXPLA (20.6 [6.9] min; P < 0.001). There were effects of condition for all perceptual and cardiometabolic variables when compared at isotime (P < 0.05) and task failure (TF; P < 0.05), except for ventilation, perceptual responses, and neuromuscular function measures, which were not different at TF (P > 0.05). Blood lactate concentration was stable in all conditions for participants who completed 30 min of exercise. These findings indicate that TTF at MLSS is not enhanced by preexercise CHO supplementation, but recent intense exercise decreases TTF at MLSS even with CHO supplementation. Extreme fluctuations in diet and strenuous exercise that reduce CHO availability should be avoided before MLSS determination.NEW & NOTEWORTHY Carbohydrate (CHO) loading did not increase participants' ability to cycle at their maximal lactate steady state (MLSS); however, performing a glycogen depletion task the evening before cycling at MLSS reduced the time to task failure, even when paired with a high dose of CHO. These diet and exercise interventions influenced blood lactate concentration ([BLa]) but not the stability of [BLa]. Activities that reduce CHO availability should be avoided before MLSS determination.


Asunto(s)
Ácido Láctico , Resistencia Física , Masculino , Femenino , Humanos , Resistencia Física/fisiología , Consumo de Oxígeno , Prueba de Esfuerzo , Glucógeno , Poliésteres
20.
Int J Sports Physiol Perform ; 19(4): 412-416, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215736

RESUMEN

PURPOSE: Ultramarathon running has gained popularity over several decades. Although there has been considerable research on training for other running events, from the 100-m to the marathon at 26.2 miles (42.2 km), there is little evidence on best practices for ultramarathons, where distances potentially exceed 100 miles (160.9 km). METHODS: In this case study, we examine the training regimen of an elite ultramarathon runner who broke 8 world records in 2021 and 2022, including the 24-hour run in which he ran 319.6 km in September 2022. Training data from December 28, 2020, to September 17, 2022, were collected from the Strava application database (recorded on Coros watch) and analyzed using Microsoft Excel and Tableau. RESULTS: Our subject completed 5 training blocks, with volume per training block averaging 172.1 to 263 km/wk. Peak running volume per training block occurred on average 3.2 weeks out from races and reached a maximum of 378 km/wk. Recovery was emphasized the week following a race, with less running (19 km/wk) and more cross-training. Interval-type workouts (1- to 10-km repeats) were completed throughout training blocks. The average pace during the 24-hour world-record run was 4 minutes and 30 seconds per kilometer (4:30/km), closely matching the overall average training pace. CONCLUSIONS: These findings suggest that training for ultramarathon races should include high-volume running at varied paces and intensity with cross-training to avoid injuries. We hope that this evidence helps athletes understand how to prepare for these ultraendurance events.


Asunto(s)
Resistencia Física , Carrera , Masculino , Humanos , Carrera de Maratón , Atletas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...